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ABSTRACT
Measuring reliability of edge networks in the Internet is difficult due
to the size and heterogeneity of networks, the rarity of outages, and
the difficulty of finding vantage points that can accurately capture
such events at scale. In this paper, we use logs from a major CDN,
detailing hourly request counts from address blocks. We discovered
that in many edge address blocks, devices, collectively, contact the
CDN every hour over weeks andmonths.We establish that a sudden
temporary absence of these requests indicates a loss of Internet
connectivity of those address blocks, events we call disruptions.

We develop a disruption detection technique and present broad
and detailed statistics on 1.5M disruption events over the course of
a year. Our approach reveals that disruptions do not necessarily re-
flect actual service outages, but can be the result of prefix migrations.
Major natural disasters are clearly represented in our data as ex-
pected; however, a large share of detected disruptions correlate well
with planned human intervention during scheduled maintenance
intervals, and are thus unlikely to be caused by external factors.
Cross-evaluating our results we find that current state-of-the-art ac-
tive outage detection over-estimates the occurrence of disruptions
in some address blocks. Our observations of disruptions, service
outages, and different causes for such events yield implications for
the design of outage detection systems, as well as for policymakers
seeking to establish reporting requirements for Internet services.
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1 INTRODUCTION
Residential Internet access has become critical: while long ago pack-
ets were exchanged over a connection designed for reliable voice
communication, it has become common to provide myriad services,
even voice, over a network built for best-effort data communication.
Reliable Internet connectivity has become increasingly necessary
not only for individual users and their emergency communica-
tion needs or the operation of smart in-home devices but also for
businesses that provide network services or sell to end-users. The
increasing criticality of the Internet is reflected in growing atten-
tion from governments and regulators around the globe to monitor
and improve Internet reliability [38–41].

Despite the importance of continuous Internet access, there is
a shortage of high quality data that quantifies Internet reliability
at the edge. Reliability is difficult to measure, since true outages
are rare events happening inside of thousands of independently
administered networks. Each network is subject to individual net-
work management practices, resulting in different network char-
acteristics, making it both challenging to develop methods to mea-
sure reliability at scale, as well as to interpret measurement re-
sults. While these challenges apply to reliability measurements of
both residential and core networks, of particular relevance to end-
user network outages is the typical absence of any global routing-
protocol activity (§ 7). Prior approaches to measure Internet edge
reliability have thus either relied on deploying hardware in end-
user premises [27, 52, 55], or on periodically sending probe traffic
to specific IP addresses [25, 46, 54].

This paper introduces a new passive approach to detect Internet
edge disruptions and outages, using server logs of one of the world’s
largest CDNs. This dataset has several advantages over prior tech-
niques: it samples the edge of the Internet broadly, it favors actively
used addresses, and it relies on network traffic that is unlikely to
be blocked. We make the following high-level contributions:
• Measurementmethodology:We introduce a passive approach
to detect disruptions in address activity based on CDN access
logs. We leverage a key observation that an ever-increasing
number of always-on devices (e.g., smartphones, smart TVs) re-
sult in constant, non-human triggered request activity to CDN
servers, an effect we call baseline activity. We establish that a
temporary absence of these requests indicates a loss of Inter-
net connectivity of given address blocks, events we refer to as
disruptions. We develop and evaluate an approach to robustly
detect such disruptions in our dataset, enabling us to continu-
ously track disruptions (i) on a broad scale, and (ii) in detail, i.e.,
for individual IPv4 /24 address blocks. Evaluating our approach
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against Trinocular [46], a state-of-the-art Internet-wide active
outage detection technique, we find that Trinocular’s outages
must be filtered for most events to be correct, otherwise false
positives in few address blocks can dominate.
• Fine-grained understanding of disruptions:Wepresent de-
tailed statistics on some 1.5M detected disruption events span-
ning one entire year. We investigate disruption sizes, duration,
frequency of occurrence, and timing. While major external
events such as natural disasters are clearly represented in our
datasets, we find that a large share of disruptions are unlikely
to be caused by external factors, but align well with scheduled
ISP maintenance intervals. We illustrate our findings with a
case study of major US broadband ISPs.
• Disruptions vs. service outages: We leverage an orthogo-
nal dataset that enables us to track the activity of individual
devices across address blocks in the face of disruptions. Our
analysis reveals that at least some 10% of disruption events
do not reflect actual service outages, but large-scale prefix mi-
gration. We discover that temporary prefix migrations often
result in massive anti-disruption events, sudden shifts in prefix
activity. We develop techniques to detect anti-disruptions on a
per-AS level, and pinpoint networks that are particularly prone
to show such behavior (and thus bias outage detection mecha-
nisms). We study to what extent publicly available BGP data
captures detected disruptions, finding that BGP hides some 80%
of identified disruptions, but also that even a BGP withdrawal
of a prefix does not necessarily indicate an actual service outage.

Our findings challenge common assumptions in the field of Inter-
net edge outage detection, such as how to determine if a measured
event really corresponds to a service outage. As well, our findings
challenge the interpretation of such results, given that disruptions
and outages can be caused by a variety of factors, i.e., whether a
planned service maintenance should be interpreted similarly to a
service outage caused by unplanned internal or external events.

The remainder of this paper is structured as follows: We intro-
duce definitions and discuss related work in Section 2. In Section 3
we show how we can leverage baseline activity in the CDN logs to
identify disruptions, introduce our detection mechanism and com-
pare it against state-of-the-art active outage detection. We study
identified disruption events on a broad scale in Section 4. We then
shift our perspective and drill into details of disruption events from
a device-centric perspective in Section 5. We discover and analyze
the phenomenon of anti-disruptions in Section 6 and assess ways
to distinguish disruptions from service outages in Section 7. We il-
lustrate our findings with a case study of major US ISPs in Section 8
and discuss the pertinent implications of our work in Section 9.

2 ON DETECTING EDGE OUTAGES
In this section, we introduce necessary terminology and discuss
the current state-of-the-art in Internet edge outage detection.

2.1 Defining Outages
In this work, we introduce a rigorous distinction between a de-
tectable symptom of a service outage and the outage itself; and we
consider possible, alternative causes of that symptom. We introduce
the following two terms:

Disruption: A temporary loss of Internet connectivity of
specific IP address blocks.
Outage: A disruption that results in the loss of the Internet
access service that had been provided to the end devices in
the affected address blocks.
A disruption may be the measurable consequence of an out-

age, but a disruption does not always imply that an actual outage
occurred. For example, a disruption occurs when the public IP
addresses associated with end hosts are changed and the prior ad-
dresses are not immediately assigned to other devices—an outage
need not have occurred. There are different datasets and methods to
detect disruptions in the Internet in the control and data planes, in-
cluding the measurement of BGP announcements and withdrawals,
sudden loss of ICMP responsiveness for specific address blocks, and
sudden drops in traffic from/to specific address blocks.

2.2 Related Work
Internet failures affecting the core of the network have been well
studied, using data-plane techniques [13, 43], control-plane tech-
niques [26, 35], or combinations of both [23, 32–34]. Other works
investigated external sources such as router logs [59] and mailing
lists [11] to study infrastructure outages.

Failures affecting the edge have been studied at smaller scales
using measurement agents deployed at user premises [10, 15, 16,
27, 55]. These agents are typically dedicated hardware devices,
such as SamKnows [52] and BISmark [58] routers and RIPE Atlas
probes [50], although some approaches use measurements from
software deployed on user systems [10, 53, 56] or a combination
of hardware and software [16]. Such approaches can offer detailed
and accurate reports about Internet reliability since the agents are
designed to execute measurements continuously as long as they
are powered. However, cost and logistical difficulties of deploying
measurement agents to users severely limits their scalability.

To detect outages at scale, studies have investigated actively prob-
ing destinations from vantage points and using probe responses—or
lack thereof—as signal for edge outages. Thunderping analyzes the
effect of weather on residential networks [54] by pinging residen-
tial IP addresses in geographic areas subject to severe weather.
Trinocular [46] models the responsiveness of routed /24 prefixes
using historical data [28] and sends ICMP probes to 4M routed /24
prefixes to detect disruptions. By applying Bayesian inference to
responses, Trinocular detects a disruption affecting a prefix when
it finds that the prefix has become unresponsive according to its
model. We evaluate our results against Trinocular in § 3.7.

Dainotti et al. detect Internet outages at the country level by iden-
tifying times of reduced traffic from addresses in certain countries
toward unused IPv4 address space [22]. Traffic to unused portions
of the IPv4 address space is often sent by misconfigured devices or
malicious hosts [12] who may spoof their source addresses, making
it difficult to infer if addresses sending traffic to the darknet are
actively in use by user devices.

Prior work has interpreted intermittently inactive addresses or
address blocks (i.e., what we term disruptions) as outages [22, 46, 54].
A key aspect that differentiates our work is that we seek to further
investigate whether detected disruptions result in service outages.
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largely constant over time.

Figure 1: Baseline Activity: Minimum Number of active IPv4 addresses.

3 DETECTING DISRUPTIONS
In this section we first introduce our dataset and its properties. We
discover and study the notion of baseline activity in our data and
introduce our approach to detect disruptions. We then tune our
parameters for robustness by cross-validating against ICMP-based
disruption detection and compare our results with a state-of-the-art
active outage detection mechanism.

3.1 Dataset
We base this study on (proprietary) server logs of one of the world’s
largest CDNs which operated more than 240,000 servers in more
than 130 countries and over 1,700 networks, serving some 3 trillion
HTTP requests on a daily basis. Each time a client fetches a Web
object from a CDN edge server, a log entry is created, which is then
processed and aggregated through a distributed data collection
framework. Our dataset consists of the number of requests ("hits")
per hour issued by each IP address over an observation period of
54 weeks from March 2017 to March 2018. We note that due to
the hourly binning of our dataset, we can only detect disruptions
that span at least one full calendar hour. Prior work established that
the CDN logs capture activity from the vast majority of the active
address space (some 1.2B active IPv4 addresses over the course of a
year), and we refer the reader to [48] for a more detailed study of
the visibility of the CDN logs.

The CDN’s servers are typically located close to the end-users,
often in the same network, and/or metropolitan area. Also, if there
is a fault in the path between the client device and the server,
or the server goes down, or there is a problem in the datacenter
hosting the server, but the client still has connectivity to the Internet,
then connections to the CDN may be disrupted, but can be re-
established to another server, possibly in a different datacenter. The
CDN continuously revises the DNS forward resolution, and the
DNS TTLs are nominally 20 seconds. Thus, over a period of an
hour, a drop in the number of hits from a given address is due to
either the associated end devices not attempting to connect to the
CDN, or the loss of connectivity at that address, possibly due to
planned operations of the network provider, or an unplanned event.

3.2 Steady CDN Activity as Signal
The hourly snapshots from our logs provide a time series to analyze.
As expected, hourly hit counts (traffic) have both diurnal and day-of-
the-week effects, as well as other effects, such as holidays and other
variations in activity from end devices. There is a large literature
on detecting anomalies in time series (e.g., [9, 20, 31, 57, 60]), and
we tried various methods. However, we soon realized that we then
faced the difficult problem of determiningwhich detected anomalies
in the time series were actually a disruption, i.e., loss of Internet
connectivity of the address blocks.

Instead, we selected a subset of the prefixes for which we can
infer an activity signal that is both largely independent of direct
human-triggered activity and is dependent on a functioning network.
We find that the number of addresses active in a given hour yields
a smoothed signal of the number of requests per hour, and that for
many prefixes, this number of active addresses has a high-enough
baseline (minimum over a week-long interval) to permit observing
a disruption as a significant violation of this minimum. We focus on
this baseline address activity metric and apply our technique only
to those prefixes that have a sustained, sufficiently high baseline.
We next show examples of baseline address activity, how prevalent
a high baseline is, and how stable it is.
Baseline address activity examples: Figure 1a shows the num-
ber of hourly active IPv4 addresses from three selected /24 address
blocks over one month. Although individual address blocks vary
widely in terms of active addresses, note that each shows a baseline
activity, i.e., the number of addresses contacting the CDN has a
relatively stable minimum value. We manually inspected off-hour
request traffic from several address blocks and found that a variety
of Smartphone applications, widgets, and software installations
cause this activity by sending repeated beacons, status updates, and
update requests. Thus, baseline activity persists at any given hour
and does not require action by humans, e.g., by visiting a website
hosted on the CDN’s infrastructure.
Baseline coverage: Baseline activity presents us with a steady
signal to detect potential disruptions in end-user connectivity, since
it reduces the effect of human-triggered action. We next address
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whether baseline activity is present in sufficiently many address
blocks. Of the set of /24 prefixes that had any activity in any hour,
within a week, or month, Figure 1b shows the CCDF of the fraction
of these prefixes for which the minimum number of active IPv4
addresses in each hour is at least a given value. For example, for 44%
of the /24 prefixes, the minimum number of active addresses over
the course of a week is at least 40.1 Indeed, we observe that baseline
activity is not an isolated phenomenon, but that a large number of
/24 address blocks show a significant minimum number of active
addresses. We note that baseline activity is prevalent across many
networks and addressing mechanisms (see Figure 1a for examples
both of statically as well as dynamically assigned client addresses).
We further study coverage of our approach in § 3.4, and see § 9.1
for discussion of IPv6.
Baseline continuity: To assess how continuous baseline activity
is (and not, e.g., affected by short-term seasonal effects or frequent
network restructurings), we show in Figure 1c the week-to-week
change in the minimum number of active IPv4 addresses. To gener-
ate this plot, we selected all baseline values for each /24 and week
in which the baseline is at least 40. We then calculate the minimum
number active addresses in the subsequent week, where the latter
minimum might be below 40. Figure 1c then shows the ratio of the
latter minimum divided by the former baseline. Baseline activity
on a per-block level is indeed very steady over time; close to 80% of
the /24 address blocks show a change only in the range of +- 10% of
the active addresses, and only 2% of address blocks show changes
that exceed 50% of the active addresses. Note the small peak at 0,
indicating that the baseline activity changed to zero.

3.3 Detecting Activity Disruptions
Having established that active IPv4 address counts per address block
remain steady over periods of time, we next introduce our approach
to detect disruptions in this activity. Note that our approach focuses
on offline detection of disruptions in CDN log files and we discuss
the possibility of real-time analysis in § 9.1.

Figure 2 illustrates our approach for an exemplary /24 address
block. For each /24 IPv4 prefix, we use a sliding window in which
we calculate the minimum number of active addresses in each hour
over the last 168 hours, denoted as b0. We advance the sliding
window each hour, updating the value of b0. If the window reaches
an hour where the number of addresses is below a threshold, α ×b0,
for 0 < α < 1, then we tag this hour as the start of a non-steady-
state period. Upon such an event, we do not advance the sliding
window, and rather introduce a second, new slidingwindow starting
at the first hour of the non-steady-state period, and calculate the
minimum number of active addresses for the future 168 hours. We
advance the new window until it reaches a new baseline that is at
least β ×b0, meant to be “reasonably” close to b0. The hour at which
this occurs is the end of the non-steady-state period, and the start
of a new steady-state period. We then identify a disruption event
as those contiguous hours in the non-steady-state period where
number of active addresses is lower than b0 ×min(α , β )), shown in
red in Figure 2. Typically, there is just one disruption event, though
sometimes, as in Figure 2, there is more than one.

1The exemplary CCDF is for a week in March 2017 and the entire month of March;
other weeks and months show the same behavior.
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Figure 2: Disruption detection: If the number of hourly ac-
tive addresses declines below a threshold α × b0, where b0
is the minimum number of active addresses in the last 168
hours, we enter a non-steady-state period. Once the mini-
mum number of active addresses over 168 hours is restored
to at least β × b0, the non-steady-state period ends. Within
non-steady-state periods, disruption events are contiguous
hours with fewer than b0 ×min(α , β ) active addresses.

However, there are time series where the criterion for the new
baseline is never met, or not met for a long time, possibly due to
network restructuring or some long-term change. In this work, we
are not interested in such events, and thus we impose a limit of
two weeks for the duration of detected disruptions: If the second
window advances for two weeks without satisfying the criteria
for a new baseline, then we do not identify disruption events for
this non-steady-state period, but continue to advance the window
until the criteria for the new baseline is met, if ever. Note that this
excludes the detection of outages that are longer than two weeks.
The above logic intentionally restricts the set of disruptions to those
with steady baseline activity both before and after the disruption event.
This simplifies, though by no means resolves, the task of inferring
which disruptions are outages, see Section 5.

3.4 Trackable Address Blocks
We chose to require that the baseline activity for a /24 prefix, b0, be
at least 40 active addresses for us to consider it to be in a trackable
state, i.e., we will look for a disruption in the following hour. We
experimented with various values and found that 40 yields a reason-
able trade-off: a lower value would include more prefixes (Figure 1b)
but be more vulnerable to false disruptions, which we will elaborate
on in the next section. This minimum requirement for a trackable
prefix prevents detection of disruptions in address blocks where
the address activity regularly reaches a lower value, for example
enterprise networks with little activity during weekends, or the
German university prefix in Figure 1a with a baseline of 13.

Although baseline activity is often stable over long periods of
time, an address block can be trackable for some weeks but not
others. To assess the overall coverage of our dataset, we now con-
sider the full observation period of one year, and count how many
/24s have a baseline b0 of at least 40 for each hour of the year. We
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exclude the first week since we need 168 prior hours to establish the
baseline. The median value across all hours is 2.3M trackable /24
address blocks in more than 12.5K ASes. The median absolute
deviation of trackable address blocks across all hours is very low:
2K /24 blocks, or 0.1%. Even during Christmas and New Year’s, the
period with the lowest number of trackable blocks, the number
decreases only minimally by 15K, or 0.7% of the typical 2.3M. These
2.3M trackable /24 address blocks represent 37% of all /24 prefixes
that showed any activity, yet they host 82% of all active IPv4 ad-
dresses that the CDN sees and account for 80% of all requests issued
to the CDN. We can, hence, track those portions of the address
space that host a large majority of clients of the CDN.

3.5 Choosing Robust Parameters
We can adjust the sensitivity of our approach by setting α and β . A
high α value will result in more detected disruptions—a high value
will set the threshold close to the baseline, thusmaking it more likely
to be crossed—while a low α may miss partial disruptions. The β
value directly affects how sensitive the algorithm is to determining
the end of non-steady-state and contained disruptions—a high value
will require that the prefix activity be restored to near the original
baseline, while a low value may classify long-term baseline changes
(e.g., permanent network restructurings) as disruptions. We have
established that baseline activity (§ 3.2) is rarely affected by users’
schedules. Still, the parameters of our approach must be set so
that detected disruptions are not the result of regular variability in
address activity, i.e., hosts temporarily not contacting the CDN, but
still active with their IP addresses.
CDN vs. ICMP as disruption signal: In order to adjust our pa-
rameters, we calibrate against an orthogonal approach to detect
disruptions, active ICMP echo probing, which should be reasonably
independent of CDN address activity. We will choose parameters
that rarely detect disruptions that are not clearly accompanied by a
drop in ICMP responsiveness. See Figure 3a, which shows the num-
ber of IPv4 addresses in a /24 prefix that contact the CDN per hour,
as well as the number of ICMP responsive addresses in this block.
During the disruption in address activity, we can see a disruption
in ICMP responsiveness at the same time. We manually inspected

hundreds of disruption events showing this behavior and are thus
confident that this example disruption in the CDN logs indicates a
disruption in connectivity to an IP address block. We next apply a
method based on this observation to select α and β .

Actively probing the address space has limitations that make it
impossible to comprehensively evaluate our detected disruptions
against ICMP responsiveness. In particular, recent measurements
show that up to about 40% of the hosts contacting the CDN typically
do not respond to ICMP echo requests [48]. In addition, probing
every routed IP address on a continuous basis requires substan-
tial bandwidth for the probes, operator attention, and a strategy
for reacting to firewall-based filtering of probe traffic. However,
while these limitations prevent a comprehensive evaluation, we
can compare some address blocks and time periods, for which we
have available data, for the purpose of adjusting our parameters.
ICMP survey data: We leverage address space survey datasets
provided by ISI [4–7] (the ICMP data shown in Figure 3a is also
from [7]). ISI address space surveys periodically, every 11 min-
utes, send ICMP echo requests to all IP addresses within ≈ 1% of
the allocated IPv4 /24 address blocks. Surveyed address blocks are
selected using different policies, i.e., the survey population both
contains randomly selected address blocks as well as some address
blocks that were responsive to ICMP requests in earlier probing
attempts (see [28] for details). Hence, while this dataset covers
only a small portion of the space, it comprehensively probes ev-
ery address within that subset of /24s. We leverage data from four
surveys executed between June and September 2017. In total, this
dataset contains some 52K /24 address blocks, 21K probed over a
two week window, and 31K over a four week window. In a first
step, we remove ISI blocks that never had more than 40 responsive
IP addresses in any hour, reducing our set by some 53% down to
25K blocks. Next, we intersect the 25K blocks with those address
blocks that were in a trackable state in our CDN data (recall § 3.4),
leaving us with 15K address blocks for comparison.
Comparing CDN and ICMP disruptions: Next, we execute our
disruption detection for each combination of α and β values ranging
from 0.1 to 0.9. Whenever our approach detects a disruption, we
compare the time interval of our disruption with ICMP following a
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two-step approach: For those hours that were not affected by the
disruption, we require that ICMP responsiveness never drops below
40 and has a maximum range of ± 30 addresses.2 This ensures that
we only compare address blocks for which we have a steady signal
of ICMP responsiveness in its regular state. If this criterion is satis-
fied, we then classify the disruption into agree or disagree. We say
that a disruption agrees, if the maximum number of ICMP respon-
sive addresses during the disruption is smaller than the minimum
number of ICMP responsive addresses outside the disruption. That
is, at all points in time, we see more ICMP responsive addresses out-
side of the disruption compared to the disrupted hours themselves.
Note that the number of disruptions, and of address blocks, that we
compare varies depending on the individual α and β , but ranges
between 200 and 2000 address blocks. We are aware that this is a
comparably small sample. For this reason we strive for minimal
disagreement and set strong criteria for our cross-evaluation.

3.6 Data-driven Parameter Selection
Figure 3b shows the percentage of disagreement between our CDN
detection and ICMP for different values of α and β . For the percent-
ages in Figure 3b, recall that the number of samples varied, and
thus there is some coarseness when comparing the percentages,
particularly for fractions of a percentage. Nevertheless, Figure 3b
yields some general observations. Very low values of α and β ex-
clusively capture disruptions where the number of active addresses
goes to zero. For these cases, we did not detect a single instance
of disagreement. With higher values, our detection sensitivity in-
creases — up to the extreme case where both α and β are at 0.9,
resulting in more than 60% of cases where ICMP responsiveness
does not drop with CDN activity. To keep the disagreement below
roughly 3%, α and β can not both be greater than 0.5. Also, ignoring
for the moment the impact of the choice of α , a high value of β
enforces a higher recovery of address activity, which leads to a
more conservative, restrictive criterion for determining the termi-
nation of a disruption (i.e., lessens the likelihood that a level-shift
change is falsely detected as a disruption, at the risk of missing
some true disruptions). We chose β to be 0.8. Then, for β = 0.8,
Figure 3c shows how the fraction of disagreement (potential false
positives) as well as the fraction of address blocks in which we
detect a disruption (completeness) changes for different values of
α . While the number of disruptions increases only linearly up to
alpha values of 0.5, the number of disagreements steeply increases
for α values of 0.6 or larger. Based on our observations, we fix α to
0.5 and β to 0.8 for the remainder of this work.

With these parameters, there remain a few cases where ICMP
responsiveness and CDN activity disagree, all of which were partial
disruptions to address activity: not all addresses were affected. We
opt for conservativeness: fewer disruptions but more confidence
that they are really disruptions. While we detect all disruptions that
affect an entire /24 (assuming the /24 was in a trackable state before
the disruption), we will not detect all disruptions that affect parts of
/24s. In the following, we note where we separate disruptions that
affect entire /24s versus disruptions that only affect partial /24s. In
addition to our cross-validation against ICMP responsiveness, in

2We exclude two hours directly before and after the disruption event from this com-
parison to account for our hourly time-binning.
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(a) Trinocular-detected disruptions in the CDN logs: For 60% of detected
Trinocular disruptions, address activity as seen from the CDN remains
unchanged. The CDN confirms only 27% of Trinocular disruptions. Filter-
ing out address blocks with frequent Trinocular disruptions reduces the
number of Trinocular disruptions, but increases agreement significantly.
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(b) CDN-detected disruptions in Trinocular: Trinocular confirms 94% of
CDN-detected disruptions that affect all addresses within a /24. Filter-
ing Trinocular data by removing frequently disrupted blocks reduces
agreement and thus likely misses true disruptions.

Figure 4: Detected disruptions in the CDN logs and Trinocu-
lar, a state-of-the-art active outage detection system.

Section 5 we leverage an external dataset revealing device activity.
This latter dataset contradicts our detected disruptions in less than
< 0.01% of the cases, making us confident that detected disruptions
indicate loss of connectivity of the concerned address blocks.

3.7 Evaluation against State-of-the-Art
Next, we evaluate our disruption detection approach against a
state-of-the-art system for Internet-wide detection of outages via
active probing: Trinocular [46]. We rely on a three-month dataset
(2017-04-03 to 2017-07-02) made available by ISI [8]. For each /24
address block, we extract all disruptions detected by Trinocular,
i.e., a down event for an address block followed by an up event. We
then compare time periods of Trinocular-disrupted address blocks
with disruptions detected in our CDN logs and vice versa. For both
datasets, we only compare disruptions that affect address blocks
that were in a trackable state in the other dataset at the time of the
disruption (i.e., we saw a baseline greater than 40 in the CDN logs,
and, likewise, a block was in an up state in Trinocular prior to a
disruption). We say that disruptions in the two datasets agree if we
find an, at least partial, overlapping in time of disruptions in the
two datasets. In future work, we plan to conduct a more detailed
analysis of timing aspects. Figure 4 shows our results.
Overall coverage: The Trinocular dataset contains information
for some 3.5M /24 address blocks (after removing blocks that were
in an unmeasurable state during our time window). On the first day
of the comparison period, the CDN recorded activity from some
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Figure 5: Hourly disrupted /24s detected over the course of our one-year observation period. Stacked bars show disruptions
that affected all addresses within a /24 (red) as well as disruptions that affected only some addresses within a /24 (blue).

5.1M /24 address blocks, 2.3M of them were in a CDN-trackable
state. Some 1.6M /24 address blocks are covered in both datasets.
Trinocular disruptions in CDN logs: For evaluating the visibil-
ity of Trinocular-detected disruptions in the CDN logs, we restrict
the analysis to disruptions in the Trinocular dataset that span at
least one calendar hour, since we can not detect shorter disruptions
in the CDN logs due to binning. Some 29.9% of the disruptions in the
overall Trinocular dataset span at least one calendar hour. We find
that Trinocular detects significantly more disruptions compared
to our CDN-detected disruptions. Figure 4a shows how Trinocular
disruptions are reflected in CDN activity. We classify them into
CDN disruption: The CDN logs show a full or partial disruption
that agrees with Trinocular’s, reduced CDN activity: we see a de-
crease in the baseline in the CDN logs, but not enough to meet our
criterion for a disruption, regular CDN activity: no decrease in the
baseline, and the CDN continues to serve content. Our approach
confirms only some 27% of Trinocular outages. In 60% of the cases,
the baseline did not change at all during the detected disruption by
Trinocular, implying a high percentage of false positive detections.
Filtering Trinocular: We discussed this result with the authors
of Trinocular, who suggested that the cause could be a known
issue with their methodology, whereby Trinocular detects frequent
change of state of some address blocks.We then chose a simple, first-
order filter of the Trinocular dataset and only considered address
blocks with fewer than 5 disruptions over the 3 month time period.
This reduces the number of disruptions for comparison by more
than two thirds, down to 110K, but only reduces the overall number
of Trinocular-trackable blocks by some 3% (from 3.5M /24s down to
3.4M /24s). Comparing this subset against our logs, we now confirm
some 74% of the detected Trinocular disruptions, though for some
26% the CDN was still serving content to at least a portion of the
address block.
CDN disruptions in Trinocular: Comparing in the opposite di-
rection, i.e. when studying the visibility of CDN-detected disrup-
tions in Trinocular, we restrict ourselves to CDN-detected disrup-
tions that affected all addresses in a /24 address block, since Trinoc-
ular’s design focuses on block-level disruptions and outages. Fig-
ure 4b shows that Trinocular indeed detected a disruption in some
94% of all CDN-detected disruptions. Comparing the CDN disrup-
tions against the filtered Trinocular dataset reduces the agreement
down to 74%. Thus, although filtering out Trinocular blocks with
5 or more disruptions had the benefit of significantly increasing
the fraction of Trinocular disruptions that were also seen by the
CDN, it has the disadvantage that the fraction of CDN-detected
disruptions not seen by Trinocular increased from 6% to 26%.

4 A GLOBAL VIEW OF DISRUPTIONS
We next apply our disruption detection mechanism over the entire
period of our dataset and study disruptions on a broad scale. Figure 5
shows the absolute number of disrupted /24 address blocks in each
hour between March 2017 and March 2018. Here, we partition
disruptions in two categories: the red bars show disruptions that
affected the entire /24 (i.e., the number of active addresses during the
disruptionwent to 0), while the blue bars (stacked) show disruptions
that affected only parts of a /24 (i.e., some addresses remained active
during the disruption). We can make several observations from this
figure: (i) the number of disrupted /24 address blocks ranges at
around 2000, or some 0.2% of tracked address blocks, with only a
fewmajor events deviating from this pattern: In September 2017, we
can see a strong spike in the number of disrupted /24s (Hurricane
Irma), and notice that during this event the majority of affected /24
address blocks only showed partial disruptions in address activity.
Aside from several other spikes indicative of single large-scale
events (§ 4.1), we observe that the number of disrupted /24 blocks
follows aweekly pattern throughout the year, but that this pattern is
mostly absent during the Christmas/New-Year’s period. We further
investigate this phenomenon in § 4.2.

4.1 Disruption Patterns in Space
In this section, we are interested in understanding how often in-
dividual address blocks are affected by disruptions, as well as if
disruptions typically span isolated address blocks or also affect
neighboring prefixes at the same time.
Disruptions per /24: Figure 6a shows the distribution of disrup-
tion events per individual /24 address block. Note that we only
show address blocks that had at least one disruption event during
our observation period. Here, we can see that more than 60% of
/24 prefixes had only a single disruption event during the entire
observation period of one year. Less than 1% of /24 address blocks
had 10 or more disruption events, with only a handful of prefixes
having more than 20, and only 8 prefixes having more than 60
disruptions, and these 8 prefixes contain only about 0.05% of all
disruption events. The important takeaway here is that the periodic
behavior in Figure 5 is not the result of some recurring pattern
affecting the same set of /24 address blocks. Instead, the weekly
pattern affects disparate /24 address blocks.
Disruption prefix size:We next group /24-disruption events to-
gether. In a first step, we put all disruptions into time bins using
two different rules: In the more relaxed case, /24 disruption events
with the same start hour are placed in a bin. In the more strict case,
we group /24 disruptions events together according to their start-
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Figure 6: Spatial properties of disruptions.

and end hour (i.e., only disruption with the same duration and start
hour will be in the same bin). Then, for all /24 blocks within each
bin, we group /24’s that are adjacent in address space, and find the
longest prefix that is completely filled by these /24s. For example, if
we have four /24 prefixes that are adjacent in address space, and are
contained in a /22 prefix, and the neighboring /24 prefixes would
not completely fill a /21 prefix, then for these four /24 prefixes the
covering prefix is a /22.

Figure 6b shows the histogram of disruption events partitioned
by the largest prefix that covers individual /24 prefixes. For exam-
ple, 18% of the disruption events with the same start time occur
in /24 prefixes that have a /23 covering prefix, while 39% do not
aggregate into a shorter prefix. We observe that with the restriction
of common of start times and of end times fewer disruptions group
into larger prefixes (see higher green bar at /24), yet still a majority
of /24 disruption events do: 52% of events with the same start and
end time aggregate into shorter prefixes (61% of events only with
the same start time). Note that we find instances in which all /24s
contained in an entire /15 address block show a disruption starting
and ending precisely at the same time. We manually investigated
large /15 events and found two of them to be related to an Iranian
cellular ISP, and one other related to an Egyptian ISP. For both
countries, reports of willful Internet shutdowns exist [37]. We note
that such abrupt events affecting large prefixes have distinct spatial
properties (red spikes in April/May in Figure 5), different from, e.g.,
the effect of Hurricane Irma (blue spike and recovery period in
September in Figure 5).

We acknowledge that this is only a first step to study spatial
properties of disruptions. Alternative ways to group /24s together
might involve more advanced clustering algorithms based on event
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Figure 7: Time patterns of disruption events.

timings [29] or alternative topological aspects, such as last visible
router on traceroutes towards /24s.

4.2 Disruption Patterns in Time
Figure 5 shows an intriguing pattern: Over the course of the year,
we clearly observe some recurring day-of-the week pattern, which
is less pronounced in the Christmas/New-Year’s week. To better
understand this pattern, we next study when disruption events typ-
ically happen. To determine the local time of disruption events, we
first geolocate all our disruption events using the CDN’s geoloca-
tion database. Leveraging geolocation with timezone information,
we can get a good estimate of the local time of disruption events.
Figure 7a shows a breakdown of the weekday on which we see the
start of disruption events, where “entire /24” means all addresses
in the prefix had no activity, and “all” also includes prefixes where
some addresses still showed activity. Complementing Figure 7a,
Figure 7b shows the distribution of disruption start times across
hours-of-the-day.
Scheduled Maintenance: Surprisingly, we observe that disrup-
tions are much more pronounced on weekdays, particularly Tues-
day, Wednesday, and Thursday, the typical maintenance window.
Comarela et al. found similar results in BGP [21] and so did Bev-
erly et al. when studying reboots of ISP routers [14]. The picture
sharpens even more when looking at the hour of the day of these
events, as shown in Figure 7b. Here, we see that most disruptions
start after midnight local time, typically between 1AM and 3AM.
These start times correspond with the maintenance window of ma-
jor ISPs (e.g., [19, 24]). In fact, disruptions during the maintenance
window dominate for many ISPs. We return to this observation in
Section 8, when discussing properties of residential US ISPs. We

357



Advancing the Art of Internet Edge Outage Detection IMC ’18, October 31-November 2, 2018, Boston, MA, USA

disruption in
1.2.3.0/24

IPbefore 

∈ 1.2.3.0/24

time

IPduring

∉ 1.2.3.0/24
IPafter

∈/∉ 1.2.3.0/24

Figure 8: For detected disruptions, we check if and when a
user device that was previously active in a disrupted address
block is active next, during and after the disruption.

note, however, that this is not an isolated phenomenon, many ISPs
across the globe show this regular disruption pattern.
ISP feedback: We shared with a contact at a major US cable
provider the disruption events that we had detected in their net-
work. They reported that all of the events that they researched
corresponded to scheduled network maintenance.

5 A DEVICE VIEW OF DISRUPTIONS
Having studied macroscopic properties of disruption events in the
prior section, we now shift our perspective and study disruption
events from a device-centric perspective, leveraging an orthogonal
dataset that allows us to track activity of individual devices across
the address space before, during, and after disruption events. This
allows us to study aspects of user mobility, as well as to identify
instances in which disruptions are not indicative of service outages.

5.1 Device Activity across Address Blocks
To study activity of individual devices, we next leverage an orthog-
onal dataset: Logs from a service offered by the CDN to content
owners whereby end users can elect to install software that will
improve the performance the client experiences when accessing
the content through the CDN.3
Pinpointing devices: The software runs on Windows and Mac
OS X and is installed on desktops and laptops, but not smartphones.
Devices with the software installed repeatedly contact the CDN,
and identify themselves with the unique identifier of the software
installation on the machine, herein called the “software ID,” or
simply “ID”. For the present study, the relevant fields of the log
lines are: the timestamp at which the log line is created, the public
IP address seen by the CDN’s infrastructure at this time, and the ID.
These logs are distinct from those used for the time-series-of-hits
dataset of Section 3.1, and are generated only for clients that have
installed the software, and their frequency varies. Thus, while a log
line evidently shows that a device was active at a given timestamp
with a given IP address, the absence of a log line does not imply
that the device did not have Internet connectivity. We next leverage
this dataset to study further attributes of identified disruptions.
Pairing devices and disruptions: We isolate only disruption
events that affected entire /24 address blocks (i.e., no IP address
showed any activity during the disruption) and identify all IDs that
were active in the disrupted /24 address block within the last hour
3This client-installed software does not access the data of any other applications on
the device.
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Figure 9: User devices that were previously in a disrupted ad-
dress block were sometimes active in other address blocks
during the disruption event. While some of these cases can
be attributed to mobility or tethering, the majority had a
new address in the same AS as the disrupted address block.

before the disruptions’ start time, illustrated in Figure 8. Of the
883K such disruption events, we found an ID active up to an hour
before the disruption in 52K (5.9%) instances. We note that last
IP address with which the device was active as IPbefore. Next, we
check if the ID is seen during the disruption event from some other
address block, then we call the first address associated with the ID
during the disruption IPduring. Lastly, we note the first IP address
after the disruption event as IPafter. We next proceed and study the
interplay of IDs and IP addresses during detected disruption events.
Figure 9 shows our results.
Cross-validation of detected disruption events:We found only
6 instances (< 0.01%) in which an ID was seen during a disruption
with IPduring within the disrupted address block. This again shows
that our disruption detection mechanism (§ 3) is effective in de-
tecting loss of Internet connectivity for certain address blocks and
does not falsely identify disruptions of address blocks that still have
Internet connectivity. We omit these 6 instances from our dataset.

5.2 No Device Activity during Disruptions
We first focus on disruptions in which we did not record any inter-
mediate activity, i.e., IPduring does not exist. This is the expected
case, since we naturally presume that devices in disrupted address
blocks lost Internet connectivity. Indeed, the majority (some 86% of
our disruptions) show this behavior. While for these disruptions
we do not have any indications that suggest other than a service
outage (e.g., devices cannot connect to the Internet any longer),
we further group these instances into whether the IP address cor-
responding to the software ID has changed (IPbefore , IPafter) or
remained the same (IPbefore = IPafter), see Figure 9. This distinction
is important, since it gives us a different level of confidence when
interpreting such disruptions: If the IP address of an ID remained
the same before and after the disruption, it is unlikely that the de-
vice was temporarily assigned a different address from the ISP and
switched back to its original one [42]. We are, thus, more certain
that such disruptions are service outages, as opposed to prefix mi-
gration events (next Section). If the address changed, however, we
have lower confidence when distinguishing between device move-
ment, address re-assignment, and service outages. We will consider
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this property when assessing ways to distill service outages from
disruptions in § 7.

5.3 Device Activity during Disruptions
Next, we shift our attention to the more unexpected, yet prevalent
(some 14%) case: Instances of disruptions, in which activity was
recorded during the disruption period. Note that our records reflect
a lower bound of activity during disruptions, since the software does
not necessarily contact the CDN during a disruption event, even if
the concerned end-host has Internet connectivity. This activity can
happen as a result of a few scenarios:
Mobility and tethering: First, users can physically move to a
different location and connect their device to a different network,
or the device is multi-homed, perhaps tethered through a cellular
network. We refer to these instances as mobility, highlighted in
orange in Figure 9. To identify such cases, we study if the switch
from IPbefore to IPduring involved a switch from or to a cellular
address block4 or switched AS numbers. We note that in some 20%
of the cases users switched to a cellular network, and in another
13% to a different ASN. While these cases do not reveal whether
the detected disruption in the original address block resulted in a
loss of service connectivity, they highlight that today a significant
fraction of end users are multi-homed in the sense of having the
ability to switch between different access networks, in the case of
a potential network service outage.
Address reassignment: Second, the user continues to use the
same Internet service provider, but the public IP address through
which the user’s device connects to the Internet has changed. Thus,
we detect a sudden absence of all activity within the original ad-
dress block, and see activity from the very same hosts from different
address blocks in the same AS during the disruption. Note that this
is by far the most common case for during-disruption activity, ac-
counting for some 67% of during-disruption activity instances and
for almost 10% of all detected disruption events for which we have
device-specific information. While in the case of disruptions with-
out activity (§ 5.2) as well as in cases of mobility and tethering we
do not gain hard evidence on whether a disruption really resulted
in a service outage or not, we can infer for these 9.5% of disruptions
that they are likely not the result of a service outage. We corrobo-
rate our findings that some disruptions are not service outages in
Section 6, where we identify that instances of during-dip-activity
often go along with an upsurge in overall address activity in the
prefix a device moves to.

6 DISRUPTIONS AND ANTI-DISRUPTIONS
Our device-centric analysis of disruptions revealed that in some
10% of disruptions, devices do not lose access service. We are next
interested in the interplay between such disrupted address blocks
and those address blocks into which devices move, the alternate /24
address blocks.
Microscopic anti-disruptions:We hence return to our activity-
per-/24 timeseries and inspect both the disrupted /24 as well as
the alternate /24, identified using our software ID dataset (§ 5.3).
Figure 10 shows such an example. Here, we plot activity of the

4We leverage the dataset and method described in [51] to identify cellular address
blocks.
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Figure 10: Example of an anti-disruption event: active IDs
show activity during the disruption, but from a different ad-
dress block. Their activity is correlated.

disrupted /24 in blue, and the address activity of the alternate /24
in red in the negative y-direction. Indeed, we can clearly observe
patterns of alternating activity between the concerned address
blocks. We refer to this phenomenon as anti-disruption, temporary
spikes in address activity in address blocks. We note that while
Figure 10 shows a clear anti-disruption signature, often the shift
on an individual /24 basis is not so clear, but may become apparent
when viewed network-wide.
Network-wide anti-disruptions: We next seek to leverage our
observations about anti-disruptions and generalize our approach
for detecting them without the need to track individual devices. To
do so, we invert our disruption detection mechanism (recall § 3.3) to
detect anti-disruptions. Instead of calculating the minimum number
of active addresses over the prior week window, we now calculate
the maximum number of active addresses. We then set our α value
to 1.3 and β to 1.1.5 Thus, we now detect address blocks that show
irregularly high activity over short periods of time. We next apply
our mechanisms over the entire dataset and study disruptions and
anti-disruptions on a per-AS level.

To visualize and correlate the magnitude of disruptions and
anti-disruptions, for each disruption, we calculate the number of
disrupted addresses in the /24 prefix as the difference between
the median number of active addresses in the week prior to the
disruption and the median number of addresses active during the
disruption. We then assign this number to each hour that the dis-
ruption existed. Lastly, for each hour in the observation period, we
sum over the number of disrupted addresses, if any, for all disrup-
tions observed in a given AS. We do the analogous computation
for anti-disruptions. Figure 11 shows three example ASes, with
different levels of correlation for disruptions and anti-disruptions.
While the US ISP in Figure 11a shows virtually zero correlation
between disruptions, the Spanish ISP in Figure 11b shows moderate
correlation, The Uruguay ISP (bottom) shows that most disruptions
and anti-disruptions in this AS align very clearly. We calculate
the pearson correlation across disruptions and anti-disruption (see
Figure 11) to express the degree of correlation for individual ASes.
ISP feedback:Wewere surprised to see the anti-disruption pattern
very strongly for some ISPs, having the potential to heavily skew
AS-based analysis of Internet reliability. Contacts from two ISPs,
one cable and one DSL, confirmed that reassigning prefixes is a
5We experimented with various values. No combination catches all cases we observed
when manually studying anti-disruption behavior on a per-AS basis.
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Figure 11: Hourly disrupted (blue, positive y-direction) and
anti-disrupted (red, negative y-direction) IP addresses over
the course of one year shows the AS-wide interplay of dis-
ruptions and anti-disruptions.

common practice. For example, to manage capacity, cable providers
will move an end user base from one interface on a Cable modem
termination system (CMTS) to another, triggering a renumbering of
addresses. If DHCP is used to assign addresses, there is a standard
procedure for doing so described in RFC 3203 [30], which defines
the DHCP message FORCERENEW, which can be used for “Network
renumbering: Under tightly controlled conditions, the FORCERE-
NEW procedures can be used to brute force the renumbering of
entire subnets, client per client, under control of a DHCP server.”

7 TOWARDS DISTILLING OUTAGES
FROM DISRUPTIONS

Next, we study features of disruptions to determine to what extent
it is possible to distinguish disruptions that reflect actual service
outages vs. disruptions as result of prefix migration. We do so on a
per-network level, and on the level of individual disruption events.

7.1 Network-Based Discrimination
Here we expand the per-AS classification begun in Section 6, which
introduced the correlation of the time series of number of disrupted
IP addresses versus anti-disrupted addresses. In addition to the
correlation, we leverage information from disruptions for which
we have detailed device information (recall § 5). We select 201 ASes,
for which we have at least 50 disruptions with device information.

In Figure 12, for each AS, we show its pearson correlation (x-
axis), as well as the fraction of disruptions (with device information)
that showed interim device activity (y-axis). ASes close to the origin
show both a very low correlation of disruptions and anti-disruptions
and very few disruptions that had interim activity. For these ASes,
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Figure 12: Per AS: Fraction of disruption with activity dur-
ing the disruption vs. pearson correlation of AS-wide disrup-
tions and anti-disruptions. Major US ISPs are highlighted
and discussed in § 8.

disruptions are, by our metrics, more likely to correspond to service
outages. The majority of ASes falls close to the origin: Some 54% of
the ASes have both correlation lower than 0.1 and less than 10% of
instances of during-disruption activity (70% have values lower than
0.2 / 0.2). However, we also find that some ASes show high anti-
disruption correlations and high shares of disruptions that are not
service outages (per our ID dataset). These ASes have the potential
to significantly bias measurement results and, in the case of large
ASes, even skew per-country assessments of Internet reliability.
ISP feedback: When we aggregated disruption events to coun-
tries (not reported here), a smaller European country showed the
worst reliability, by far, if one assumed that all disruptions were
service outages. However, the cause was a major ISP in that coun-
try making extensive use of temporary reassignment of address
space, resulting in major and frequent anti-disruptions. A contact
at that ISP confirmed that indeed this was the practice, and that
subscribers did not lose Internet access service during these events.

7.2 Feature-Based Discrimination
Having identified that anti-disruptions are particularly pronounced
for specific networks, we next seek to assess whether there are
dominant features of disruption events that allow us to distinguish
between different types of disruptions. We hence study properties
of disruption events for which we have per-device information (§ 5).
We group disruptions into: (i) disruptions that showed activity in
the same AS and are thus unlikely to represent service outages, and
(ii) disruptions that did not show activity. We further partition the
latter into disruptions where end-device’s IP addresses changed or
not (§ 5.2). We focus on the duration of disruptions and on their
visibility (or lack thereof) in the global routing table.
Disruption duration: Figure 13a shows the CCDF of the duration
of disruptions, where we distinguish between our three classes.
Disruptions for which we recorded interim device activity6 last, on
average, longer than disruptions for which there was no device ac-
tivity. This effect becomes particularly pronounced for disruptions
that last longer than ≈ 20 hours, where the fraction of disruptions
6Here, we restrict our set of disruptions to only consider those in which activity was
recorded in the first hour to avoid bias towards longer disruptions.
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Figure 13: Properties of different types of disruptions.

without activity becomes very small. This observation can prove
helpful for outage detection system (ours included) when determin-
ing the maximum possible duration of detection intervals. We note,
however, that also some 30% of disruptions with interim activity
last just one hour. Looking at the two cases of disruptions without
interim address activity, we note that there is little to no differ-
ence between instances where the device’s IP addresses changed
vs remained unchanged after the disruption.
Visibility in BGP: We next assess if our detected disruptions are
reflected in global routing table activity, i.e., whether they align
with BGP withdrawals. While earlier work has shown that BGP
withdrawals do not necessarily imply loss of connectivity due to
the existence of default routes [18], we assess to what extent edge
activity disruptions and outages are reflectedwith BGPwithdrawals.
We selected 10 large and geographically diverse ASes that provide a
full BGP feed to RouteViews.7 We then process weekly Routeviews
dumps and the subsequent updates and tag each /24 and hour during
our time period with the following BGP state: Number of peers that
saw a route to the corresponding /24 address block, and number
of peers that did not see a route to the corresponding /24 address
block (using longest prefix matching). Note that both numbers can
be at max 10, and it is possible for a prefix to be both visible and
invisible in a certain hour.

Then, for each disruption that resulted in a complete loss of
activity, we get the BGP state before the disruption (2 hours before
the first disrupted hour) as well as during the disruption (first hour
of the disruption). We only consider disruptions for which at least

7ASes: 3356,1221,13030,2497,286,2914,6539,6762,6939,7018.

U.S. Cable ISPs U.S. DSL ISPs
ISP A ISP B ISP C ISP D ISP E ISP F ISP G

anti-disruption corr. 0.22 0.029 -0.027 0.033 0.002 -0.043 0.052
disrupt. w/activity 3.9% 0.5% 0.5% 0.0% 2.6% 6.5% 14.3%

ever disrupted /24s 22.4% 45.1% 36.8% 8.0% 30.2% 12.4% 25.3%
only hurricane⋆ 11.3% 0.9% 2.3% 22.5% 1.3% 0.2% 2.9%
only maintenance† 67.3% 54.0% 74.9% 28.4% 59.6% 71.2% 62.2%

median disruptions* 1 1 1 1 1 1 1

⋆: /24s disrupted only in week 2017-09-09 to 2017-09-15.
†: /24s disrupted only weekdays 12AM - 6AM, excluding hurricane period.
*: median disruptions per /24 only for /24 with at least one disruption.

Table 1: US broadband ISPs typically show few indications
of anti-disruptions. The majority if their address space saw
either zero or a single disruption, the majority of disrupted
/24s were exclusively affected during maintenance hours.

9 peers saw the prefix before the disruption (we removed some
3% of disruptions in which this was not the case). We then tag a
disruption as all peers down, if at some point during the first hour of
the disruption all peers lost visibility to the prefix. We tag it as some
peers down, if the number of peers that did see the announcement
was lower than before the disruption, but not zero.

Figure 13b shows how our detected disruptions (in the different
classes of disruptions) correspond with BGP withdrawals. Note that
only about 25% of the disruptions that had no sign of activity during
the disrupted period (i.e., are more likely to be a real service outage)
coincided with a BGP withdrawal (either all-peers-down or some-
peers-down). Thus, about 75% of these disruptions were not evident
from BGP. Whether the address changed after the disruption only
has a minimal (but visible) effect. Moreover, the left two bars of
Figure 13b show that some 16% of the disruptions that had interim
device activity, indicating that the disruption was not a service
outage, still coincided with BGPwithdrawals. Interestingly, a higher
proportion of these withdrawals were not visible to all BGP peers.
Thus, when leveraging BGP withdrawals as outage detection signal:
withdrawal and absence of a prefix from the global routing table is
not definitive of a service outage.

8 CASE STUDY: U.S. BROADBAND
We next illustrate our findings with a case study of major US ISPs.
We selected the 7 largest US broadband ISPs, covering the majority
of US broadband subscribers [17]. Table 1 shows our results. All of
the ISPs are well-represented in our dataset.
Disruptions vs. outages: For each of these ISPs, Table 1, top lines,
reports their anti-disruption behavior, as well as the percent of dis-
ruptions for which activity was observed during the disruption, § 5.
We also annotated these ISPs in Figure 12. We note that with the
exception of ISP A and ISP G, most major US ISPs do not show
strong indicators of disruptions as result of mass prefix migrations
(§ 6). ISP A shows a higher correlation of anti-disruptions and dis-
ruptions, while ISP G shows a higher percentage of disruptions in
which we detected activity in other address blocks (§ 5.3). While
disruptions cannot be taken “at face value” to be service outages,
these ISPs are not among those that can heavily skew results. (e.g.,
top-right region in Figure 12).
Total disruptions: For the active /24s during the one-year obser-
vation interval, we see a very heterogeneous picture for the percent
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that saw a disruption event, ranging from some 8% up to some 45%.
We caution against interpreting this number in favor of individual
ISPs, since the number of disrupted /24s depends on a variety of
factors dependent on individual network management practices,
such as filling degree (subscribers per /24), as well as churn in ad-
dress block use [48]. We note that in all cases less than half of their
active address space saw a disruption.
Effect of Hurricane Irma: Zooming in on those /24s that ever
had a disruption, we find that Hurricane Irma [36] was the most
profound event for ISPs active in the Florida region. Some 22.5%
(ISP D) resp. 11.3% (ISP A) of all disrupted /24s were only disrupted
within this very week, out of a total time period of 54 weeks.
Scheduled maintenance: Strikingly, we find that for all but one
of the ISPs, the majority of ever disrupted /24s was exclusively dis-
rupted during the typical maintenance window, weekdays between
midnight and 6AM. For three of our ISPs, some 70% of all disrupted
/24s fall only within this time period.

9 DISCUSSION AND OUTLOOK
Our study reveals a set of observations that challenge common prac-
tice and knowledge, and yield implications and future directions
for outage detection and interpretation.

9.1 Implications for Outage Detection
We challenge a core assumption that disruptions—temporary loss
of connectivity of individual address blocks—are necessarily indica-
tive of service outages. We found evidence of bulk reassignment
of IP addresses, sometimes resulting in large-scale anti-disruptions
events; these have the potential to confuse outage detection mecha-
nisms, including ours, as well as prior work [22, 46, 54]. Leveraging
our device-specific dataset, we find that some 10% of disruptions
are the result of such migrations. Since anti-disruption behavior
is highly unevenly distributed across different ASes in different
regions of the world, this phenomenon can easily lead to severe
over-estimations of Internet outages when attempting to study reli-
ability in individual regions, or networks. Moreover, we find that
state-of-the-art active outage detection overestimates disruption
occurrences, resulting from a few unstable blocks. After filtering,
we confirm the majority of Trinocular-detected disruptions, boding
well for further research and refinement of active outage detection.
Further, we find that outages at the edge are hardly visible in the
global routing table, with only some 20%-25% of disruptions that are
very likely outages resulting in a loss of BGP visibility. Contrarily,
we find that even a BGP withdrawal is not a definitive indication of
a service outage, either. Some 15% of disruptions that do not result
in service outages show up with BGP withdrawals. Our findings
caution against taking such measurement results at face value.
Future directions:With the proliferation of Smartphone use, as
well as smart home devices, baseline activity is likely to increase
in the future, further expanding the coverage for passive outage
detection. Other vantage points (e.g., traffic at border routers of
ISPs or universities) could potentially capture such activity at a
finer granularity in space and time, albeit with a smaller coverage.
More fine-grained measurements could allow for better matching
of disruptions and anti-disruptions, potentially allowing to isolate
and remove such cases from outage detection analyses. It remains

an open question whether it is feasible to detect such instances
with active techniques, since it would require probing vast ranges
of often inactive parts of the address space.

It is currently unclear how increasing deployment of Carrier-
Grade NAT gateways as result of IPv4 exhaustion [47, 49] might
affect address-based outage detection systems, including ours. In
the IPv6 Internet, passive approaches to track edge reliability will
become more important, where active probing is problematic due to
the vastness of the space and the ephemeral nature of addresses [44].
We plan to evaluate the feasibility of our approach for IPv6 traffic. A
key challenge here will be to identify address aggregates, prefixes,
that yield a baseline activity, where the size of these prefixes will
necessarily vary greatly across the client address space, see [45]. An
essential feature we leverage for disruption detection is constant
baseline activity before and after a disruption event, which does
not allow for online analysis. While we can certainly estimate the
start of a potential disruption, online analysis can not immediately
distinguish between temporary events (disruptions) vs. long-term
changes, and level shifts. We plan to investigate such events, their
prevalence, and impact on online analysis. To detect disruptions in
prefixes where activity regularly goes to near zero, say onweekends,
the notion of baseline could be generalized to a not necessarily
contiguous set of measurement bins.

9.2 Implications for Outage Interpretation
We have learned that disruptions in address activity can have a
variety of causes, and that planned human intervention is a major
factor. We are able to identify likely causes for many of the detected
disruptions, including service outages. For example, consider ISP A
in our case study (§ 8): some 67% of /24s were only disrupted dur-
ing scheduled maintenance intervals, another 11% only during a
one-week interval of Hurricane Irma. That leaves only some 20%
of disrupted blocks that fall outside these two categories. A key
implication here is that the interpretation of reliability and outage
measurements must take such factors into account and be qualified
by specific questions under study. Does a service outage during
scheduled maintenance have the same significance as one due to
an unplanned network fault? Should Service Level Agreements
(SLAs) make a distinction? SLAs for enterprise Internet connec-
tivity (e.g., [1, 2]), for example, exclude service outages within
scheduled maintenance intervals from network availability calcula-
tions (albeit sometimes with a clause that subscribers be notified of
such events), as well as service outages caused by events of force
majeure (e.g., natural disasters). Thus, statistics on disruptions and
outages need to be put into proper perspective.
Future directions: Accurate measurement and interpretation of
Internet outages will become more critical in the future, when ISPs
will most likely become subject to more stringent regulations e.g.,
by the FCC in the US, in particular outage reporting requirements.
Current reporting requirements [3] cover telephone service and
set reporting criteria based on minimum duration of outages (30
minutes) and affected user minutes (900,000 user minutes). A key
challenge will be how to define criteria for Internet outages, their
duration, magnitude, and eventual impact on end users to derive
robust threshold criteria for Internet outage reporting requirements.
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